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SECTION I

INTRODUCT ION

Two separate but related efforts are described in this
report. The first and more significant effort is a demonstration
of the capability of the patch zoning method for numerically
solving the magnetic field integral equation (MFIE) . This is
accomplished by comparing experimental data with numerical
computations of the current density induced on metallic struc-
tures. The most immediate impact of this capability is its
effect on determining the potential and limitations of experi-
mental procedures.

The structures that were treated numerically and experi-

mentally are an aircraft model in free space and a metallic
cylinder of finite length in free space and also above and
parallel to a metallic ground plane. The experiments were
performed at the University of Michigan by Valdis Liepa and
his associates under contract to the Air Force Weapons Labora-

tory.

The secondary effort is a derivation of the electric field
integrodifferential equation (EFIDE) and the MFIE for electro-
magnetic pulse external interaction with perfectly conducting

bodies above a finitely conducting half-space. The relation-

ship between the two efforts is that the equations are repre-

sented in such a manner that the computational results, which

are compared with experimental data, are readily seen to

correspond to the numerical treatment of special cases of the

MPIE finitely conducting ground equations..

The derivation of the EFIDE and the MFIE, which include

lossy earth effects, utilizes the explicit representations of

4 ’ 5
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Green’s dyadics given by Tai (ref. 1) after appropriately

accounting for missing terms (ref. 2). The results obtained
by the straightforward use of Tai’s dyadic representations
contain infinite sums of infinite integrals. We introduce a
procedure that primarily consists of a coordinate change that
reduces these sums to finite sums of well studied Sommerfeld
integrals. The reduction of the infinite sums to finite sums
was not unexpected since we could have obtained the same
results by appropriately combining vertical and horizontal
dipole solutions.

To enhance the utility of our equations, we change Tai’s
notation to that of Ba~os (ref. 3) after the infinite sum
reductions. We do this for two reasons. First, Ba~os presents
a detailed theoretical investigatior’~ of the resulting Sommer-
feld integrals. The other reason is that the work of Lytle
and Lager (ref S. 4, 5) uses Ba~os notation and it contains com-
puter codes for the evaluation of the Sommerfeld integrals.
The recent work of Haddad and Chang (ref. 6) also contains both
theoretical and numerical work related to the evaluation of
the Sommerfeld integrals.

1
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SECTION II

PRESENTATION OF UNSLMPL IFIED RE PRESENTATIONS
FOR E(r ) AND H(r )

For the purpose of this analysis it is convenient to divide

our volume of interest into two regions (fig. 1) , VF 
and V~~.

V
F is the volume bounded by the surface of the object , S. the

interface surface , SB, and the upper hemisphere at infinity ,

SF .  V
F includes the volume V~ over which the source J(r) is

defined. V~ is the semi-infinite volume bounded by SB and the

lower hemisphere at infinity . The equations satisfied in each

region are

= i~~u~ H 1(r)  r E VF (1)

= 

~~~~~~~~~~~~~~ 

E~~(r) + J(r) r € V~ (2)

and J(r ) = 0 unless r V~~. The equations in V~ are

X 

~~~~~ 
= ~~ ~~~~~ 

r E V
C

X = 1U~J C  E2
(r) r € (4)

where is a complex function of w [i.e., ~ = c
R(.~

) + i~~1(w)] to
account for the fact that the half space V~ is lossy and
frequency dispersive . Combining equations 1 and 2 we obtain

LF ~.i~ E) = i~~~ ~~~~ 
(5)

where

LF
= V x V

~~~~
_ k

~ 
(6)
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Figure 1. Geometry for Electromagnetic Scattering
from a Perfectly Conducting Body Situated Above

a Finitely Conducting Half Space.
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and

2 2k0 = w

Similarly comb ining equations 3 and 4 we obtain

Lc ~~~~~ 
= 0 (7)

where

Lc v x v x _ k 2 (8)

and

2 2k = (9)

Next we introduce the Green ’ s dyadics that  sa t i s f y the equations

(10)

and

L~~~~~(r ,r )— !~~~( r- r )  ~~~
E V C

L~, E ~ 
( 1)

Next we use the dyadic identity for an arbitrary vector a and
dyadic X found in reference 7. That is

‘4 9
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f ~(v x (V x a)) . K - a (v x (V A))} dV

f.~(n x a )  . (c 7 c K ) + (n x (V x a)) . X } d S  (12)

where V is an a rb i t ra ry  volume bounded by the closed surface  S
which has an outward norma l ~~~~. By adding and subtracting either

-k 2a . K or -k2a • K the identity (eq. 12) can be expressed as
either of the following two identities.

(L a) • K - a (L~.A)} dV

= f ~(n x a )  (V x K )  + (
~ 

x (7 x a))  
. A~~ dS (13)

f  ~(L~~~) K - a (L K) } dV

= 

f
~(n 

x a) . (7 x K) + x (7 x . X } d S . (14)

We now emp loy equation 13 where a = 
~~~~~ 

and K = and
V = V~~. Using equations 1, 5 and 10 we obtain

+ 
~ S + 

~ SB1 + 1SF~ (15)

.4 10
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where

= f (iwi.~0)(J(r) • ~(r ,~~ )) dV (16)

V
J

= iw1i0 f ( i ~(E.) x 11(E)) . ~~(~~r~) dS (17)

~SFoD 
= - f  ~ ~~~~ 

x 
~~~ 

(E)) . (v x 
~~ 

(E.,E0))

SFCO

+ i~ p 0(i~0 (r) x H1(r))  • ~~~~~~~~~~ dS (18)

= -
~~~~ {(~~B1(E

~
) x ~~(E)) . (v ~

+ iwi.iO (nBl E) x H1(r))  • ~j ( r . r.0 ) }dS (19)

and n
5
(r) is the outward normal to S. Similar ly , employing

equation l~ fo r a = E
2(r) , 

A = G
2
(~~,~~0

) ,  V = V
~ 

and using

equations 3 , 7 and 11 we obtain

‘I 
f~~~~ 2~~~~~~~ 

. (! ~ (r - ~))) dV 1SB2 + (20)

where

1SB2 ~J{(i;32 (E) ~ . (v X

+ iwPO (nB2 X 112 (E)) 
~~2 (E.~ E0)} dS (21)

‘4 11
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= -f {(~
;
~ 

X 

~~~~~ 
. (v ~ G2 (r ,E0))

SCco

+ j~~ ~ ~ 11~
(
~.)) ~ 2 (

~.’~ o~ } dS. (22)

We now simplify equations 15 and 20 by employing the boundary

conditions satisfied by the fields and the Green’s dyadics . First

we note that ‘SF — 0 as a result of the radiation condition and
— 0 as a result of the exponential decay due to losses (the

radiation condition would be sufficient if e were purely real).

Next we note that the volume integral in equation 20 is zero

because the integration is over V~ and according to equation 11,

E Vi... Combining these results we can write equations 15 and
U 2O as

E(r )  — 
~T
(Eo) + iwu fj~~r~ 

. ~~~(r ,~~~) dS + 
~~SBl ( 23)

and

-~SB2 
= 0 (24)

where we have used equation 17 and the definition

= x 11(r). (25)

We now use the fact that i x E and i~ x H are continuous across the
interface and that and are chosen with this fact in mind in

order that 1sBl — 1sB2 which according to equation 24 equals

zero in order to write equation 23 as

— 

~T (!o) + iuni~, fJ8(r) . 
~~(rr) dS. (26)

‘4 12
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We now return to equation 17 which combined with the information

contained in equation 26 enables the interpretation (and evalu-

ation for plane wave excitation) of ET(~~,
) without explicitly

performing the indicated integral over V~ . From equation 16 we
see that ET(~~

) is independent of the surface S. From equation

26 we see that by imagining S to vanish, ~~(~~) can be inter-

preted as the total field , incident plus scattered , due to the
U lossy half-space with S absent. For an incident plane wave,

would be simply expressed (algebraically) in terms of the Fresnel
reflection coefficients .

We now rewrite equation 26 with the following change variables
to conform to standard notation , i.e., is now denoted as E. and
r is now denoted as r ’ . The resulting equation is

U = 
~~~~~~ 

+ LWISI
O JJ S

( r )  . G1(r ,r) dS’ (27)

which can be rewritten as

= 
~~~~~ 

+ iu)u
of~~i

(r ’.r) . J~ (r ’) dS’ (28)

S

where “— denotes transpose. We now use the fact that

~~1
(r ,r) - ~~~~~~~~ r r ’)  (29)

I
where ~~~

1
~~(r ,r’) is the notation used by Tai (ref. 1) and has

exactly the same meaning implied in that book. Combining equations

28 and 29 we have

~
(
~

) 
~~~~~ 

+ iw~~
f
~~~

ll)(rr 1) . J5 (r ’) dS’ . (30) 

U

S
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Up to this poin t , all of the work presented has been tutorial;
now we make our first significant point. As pointed out by Tai
(ref. 2), the dyadics presented in his book lack necessary terms.

His method of correcting these dyadics leads to expressions that

do not explicitly exhibit the best form for subsequent numerical
treatment. For the lossy half-space dyadic (and others as well)

we can express the dyadic as the sum of two terms

~~~~r r ’) — ~~ (r ,r’) + ~~~~r,r’) (31)

and the omitted terms were omitted only from ,(r~r ’)1 the free

space Green ’s dyadic. By correcting ~~(r ,r’) by supplying the

missing L related dyadic terms (or equivalently the missing 6—
function term) we would end up with a representation for
that would not be as useful for numerical purposes as the standard

representation that does not contain the ~~~~, ~~~~, and ~ related
dyadics . The following two observations are the basis of this

claim :

1) The expanded version of ~~~ r , r ’) will  a lways contain two
different  representations that  require separate numerical treat-
ment , depending on whether one of the spatial observation point

5
, 

coordinates is larger or smaller than the corresponding integration

point coordinate.  
U

2) The derivation of the integral equation in the magnetic

field case , or the integrodifferential- equation in the electric

field case , requires that the limit be properly treated as the
observation point approaches the integration point on the surface
S. By expressing ~ ,(r .r ’) in the standard closed form , we can
make use of existing analysis to treat this limit. With this as
background we have the following representations:

~ (L~~
’) — (! + -5 vv)8 (32a)

k0

‘4 14
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where

-l
g (4~IE. - r’ 

~
) exp (ik0I!. 

- r’ (32b )

and

= 4~-f ~~ E ~~~~~~~~ (2 -

o n 0  c~ e,o

p 
+ 

~~~~~~~~~~~~~~~~~~~~ 
(33a)

where

Me~~~
(h 1) = V x 

~~~~~~~~~~ 
n4 e~~~1Z (33b)

Ne x (h1
) = 

~~~~~~ 

V x Me x (h1) 
(33c)

h - h
a =  1 2 (33d)

‘1 b = 
k~h1 

- k~h2 (33e)
k h  + k h2 1  o 2

k~ 
(33f)

— w2~0c; c is the complex permittivity
of the lossy half-space (33g)

2 2 1/2
h1 — (k0 

- ~ ) (33h)

“ 2 2~ h/2
h2 — I~k 2 

— A ) (33j)
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and is the Kronecker delta function . Implied , by the explicit

relationships presented in equation 33 , is a coord ina te sys tem
having its origin at the interface between the semi-infinite

lossless half-space and the semi-infinite lossy half-space . The

usual cylindrical coordinate system is employed with z being

measured as positive as the distance from the interface is increased

into the lossless medium . In sunmiary, equa tions 28 through 33
present an explicit representation for the electric field , E(r),

off the surface S once J5(r) has been determined. A discussion

concerning the determination of an appropr iate equa tion having
as its solution will be given in subsequent sections .

The equations that present an explicit representation for 11(r) off

the surface S, onc e J
~~

(r)  is de term ined , are arrived at by taking

the curl of equa tion 28 and empl oying equation 1. The resulting

represen tation is

= 
~T~E.

) + ft~(~.~’) . 
~~~~~

‘) dS’ (34)

S

where

R(r ,r’) = V G (rr ’) (35)

and employing the same arguments that led to the interpretation

of 
~T
(r) without the exp l icit evaluation of equation 16, we can

in terpre t

ar (
~

) r~k~ 
v 

~~~~ 
(36)

as the total magnetic field (~~~(r)) , incident plus scattered , due

to the lossy half space with S absent. For an incident p lane
wave , HT(r) would s imp ly be algebraically expressed in terms of
Fresnel reflection coefficients.

We now simp lif y equation 35, to a limited extent , by straigh t-
forward substitution . In the next section we will simp lif y it U

‘4 16
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a great deal more and discuss the numerical benefits of the form

we ultimately obtain. First we write

I~~r ,r’) = ~0(r ,r’) + ~~ (r ,r ’ ) (37)

where

K = 7 x G ( r ,r’ ) =V g x I  (38)

and

K = V x ~~
11
~~(r ,r’) (39)

s 3s — —

wi th ~~~
1
~~(r ,r ’) given by equation 33. Equation 39 can be simpli-

f ied  by employing equation 33c and the relationship

7 Ne~~~(h~ ) = k0Me
~~~

(h i) . (40)

The expression obtained is

= 

~~~~ ~~~~~~~~ (2 - 6 o)~
aN n\ (hl)M’nA (hl)

o n 0  ~= e , o

+ bM \
(h
i

)N ’
x

(h
14

. (4L)

The resulting expression for H(r) is

11(~.) = 

~~~~ 
+ fly5 X J5 (r ’))

+ 
fii~~~( r , r 1)  . 

~~S
(
~~~

’
~~~ 

dS’ . (42)
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SECTION III

PRESE~TATIO~ OF THE ELECTRIC FIELD INTEGRODIFFERENTIAL EQUATION(E F I D E )  AND THE MAGNETIC FIELD INTEGRAL E QUATION (MFIE)
IN UNSIMPLIF IED FORN

The representation for the electric field off the surface ~s

given by combining equa tions 30 , 31 , and 32 to obtain

= 

~~~~~ 
+ iwu o - r ’ j) J5 (r ’) dS ’

1 11 1
+ ~~g ~~~~~~ 

dS’ + 
~~~~ ~ ( r r ’) • J~~(r ’) dS’~

o S s (-~3)

.- e  take the cross product of both sides of equa t ion  63 wi th  ~ ( r )
wher e  r is the poin t  on S approached by the r in equat ion 43
wh i c h  was a point  off  the surface  in that  equat ion . We a l so

cons ide r  the behavior of the second in tegra l  in equat ion  43 as
the ;o ume observation point approaches the surface . (The behavior

of the  o the r  two in tegra l s  requi res  no special  t r e a t m e n t .)  The
behavior o~ Lhis limit was treated in reference 8 and we can

cI~~r e c t ly  use those results by employing representation 31.

Fi n a
~~

lv , by fo l l owing  the descr ibed  s teps  and e m p l oy in g  the

~)our1dar .’ condition

~ C~ ) = 0 r E S

~e o b t a i n  our unsimp .L if ied  EFIDE
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—nCr ) x 
~~(r) = j &~ i nCr ) x j g (t r  

- r’ I) J5(r ’) dS’
S

+ LJ5 (r ’) + fG~~~~(r ,r ’) • J5(r’) dS’1
S 1 (45)

where equivalent representations of L are

k~~LJ 5 (r ’) — • fg (ft - r’ 
~
) .15 (r ’) dS’ (46a)

— vj g (I! - r ’ v ’ L~
(
~

’) dS ’ (46b )

_ J :
’

7g ( I r  - r ’ 1) V 1 • J5(r ’) dS’ (46c)

- r’ V ’ V ’ • J8(r ’) dS’ (46d)

— vJ
’
vg (L~ 

- 

~~~
‘ 

~
) L~

(
~’~ 

dS’ (46e)

and the principal value sign is only emp loyed when it is
‘1 required .

The MFIE is obtained by taking the cross of both sides of

equation 42 with the (r) just described. We also consider

the behavior of the first integral in equation 42 as the volume

observation point approaches the surface . This limit is

precisely the one treated in the free space MFIE and its

result is known. The second integral in equation 42 requires

no special treatment as the volume observation point approaches

the surface observation point. Again, this is a major
benefit of the Green ’s dyadic representation 31. The

19 
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MFIE resulting from taking the described cross product and
limit is

f (Q)  J (r )  — i (r) x H.r (r) + f{~~(r) ~ (Vg x J(r’))} dS’

+ 
f~

n(r )  x 
~~~(~~~~

‘)  • J ( r ’)} dS’ (47)

where we have used the defini t ion (25) and dropped the sub-
scripts on .3(r). The f(c2) comes from the limiting process
associated with the f i rs t in tegral in equa tion 42 and is

f ( cz )  = 1 - c~/4 -~ (48)

where fl is the solid angle subtended by the surface S at r.

If we don’t choose r at a discontinuity in curvature, then
— 2-ir and f(~) assumes the value 1/2 which is usually seen

in the magnetic field integral equation .
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SECTION IV

DERIVATION OF THE TRACTABLE FORM S FOR THE EFIDE
AND THE MFIE

An examination of the EFIDE presented in equation 45 and
the MFIE in equation 47 reveals that the subsequent numerical
treatment of either of these equations requires the treatment

of an infinite sum of infinite integrals. This is the case

because equation 45 contains ~~~ (r ,r’) defined by equa tion 33
and equation 47 contains t~5 (r ,r’) defined by equation 41. The

objective of the work presented in this section is to derive
new exact representations for ~~~~~(r,r’) and ç(r,r’) as finite
sums of demonstrably convergent integrals. These new represen-

tations when subs tituted into equa tions 45 and 47 cons titute
the tractable forms for the EFIDE and the MFIE.

The method of obtaining the simp l i f ied forms relies on U

the interpretation of the r and r’ tha t appear in
presented for the first time in equation 29. After the change

in variables and transposi tion , then ~~~~~~r,r’) satisfies the
equation

y x y x ~~ lU ( r r ’)  - k~ ~~
11

~~( r r ’)  = !~S(r  - r ’) (49)

where the deriva tives associa ted wi th the curl opera tor are
with respect to the r variation , and the boundary conditions at

infinity and at the interface are app lied to r approaching
infinity and r on the interface . This interpretation means

that r ’ is not required to vary for representations 33 and

41 to be valid . Even though r ’ is not required to be a

variable for those repres entat ions , the app lication of those
representations, for example equations 45 and 47, do require 

U

that r ’ be a variable point that has no particular restrictions .
We use these facts in the following manner. First consider
that we have a fixed coordinate system in which r and r’ are

21

A 
_____

~~~~~~ 

- -~i
5
..

- - - - - ——-~~~~~~~~~~~~~~ - 
—~~~~----—~~~~~~~ 

- U

----5 - - - - -5 - -  -. -5- - , - -  - - -5 - -  — -—---.- -— --- . - --— ~~~~~‘ U ~~~~~~~ ~~~~~~~~ 
-



__  ‘5-~~~~~~~~~~~~~~~~~~~~~ - --5--- — - - ‘ — — - 5 -

radius vectors to the observation point and source point

r espec tively . Nex t , consider that we have another coordinate

sys tem in which the radius vector to the observation point

is denoted as and the radius vector to the source point is

denoted rj~. The subscript D is employed to indicate that 
- 

-

the second coordinate system is oriented in a special manner

U 
with respect to the delta function that appears in equation 49.

The rela tionship between these two coordinate systems will now
be described with the aid of the following figure .

I

Figure 2. Coordinate Systems

‘1 The origin for both coordinate systems is on the interface

and z and ar e measur ed positive as the distance normal to
interface increases into the lossless medium . The reason

that the subscript D is employed can now be explicitly

stated as

= z ’ (50)

- i.e., D refers to the fact that in this coordinate system ,

the orig in lies directly under the delta function source.

The reason for i ntroducing the D coordinate system is that

‘4 22 
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and r~ sa tisf y the described requiremen ts for equa tions
33 and 41 to be a valid representation in that system . Upon

using this special representation for r~ we will find that

the inf in i te sums in equations 33 and 41 reduce to f in ite
sums. After obtaining the simp lif ied repre sen tation s for
G3S (r D,rD) and 

~S
(r D, r1~) we are not in a position to use

the renresentations in equations 45 and 47 because rf~ is not

free to vary in the D coordinate system . We obtain our

si m p l i f i e d  represen ta t ions  tha t  can be used in equa t ions  65
and 47 b y explicitly performing the substitutions implied by
the following equations

= G D(~~
,
~~~

), r~~(r ,r ’)) (51)

= 

~ s ( - ~D (L ’~~’ ) ’  ~~‘. ‘ ))  (52)

with the relationship between the coordinates (see fig . 2)

given according to

= - 
~~~~

‘ (53)

Z
D

_ Z  (54)

= z’ . (55)

We wi l l  now present  exp l i c i t  r e su l t s  ob ta ined  b y fo l lowing
the de scribed procedure. First we note that for r~ g iven by
equa tion 50 , the only 

~~~~
(h 1,r~

) and N ’~~~(h 1~~~ ) that are
nonzero are the following

23
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= - ~~. e~~~lZ
’ 

~~ 
(56)

= -~~ eth 1Z ’ 
~~ 

(57)

= -~~~~~ ~~~~~~ ~~ 
(58)

~elX~~ i’~ D~ 
= ~. ~ 2- e~~ 1Z ’ 

~~ 
(59)

= i ~~ e~~~1~Z ’ (60)

Accordingly equations 33 and 41 reduce to the fol lowing

f i n i t e  sums in the D coordinate system

G~ S (r D , rD ) - ~~~ 2~a(~~~ lX (h l~ r D ) ~~~1~~(h 11 r~ )

+ 
~o lX ~~~l’~~D~ ~~~~~~

+ b(~
. N A~~ l rD) N~ 0~~(h i . r~

)

+ N
e1x

(h
1~~~~

) N’i~~
(h 1,r~

)

+ N01~~(h 1,~~~) ~~1x (h l.
~~~
))

S 
(61)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _  

______



and

= 
ml ~

a(~~ lA (h lP rD) ~~ i~~
(h 1,~

r
~
)

+ 
~~ lX (h l,rD) ~~ 1~~

(h i1 r~))

+ b(~
. M A (h l. rD ) 

~j~ 0x (h i.~~~)

I

+ M 1A (h l,rD) ~~l\ (h l,rD)

+ M01x (h i,~~~
) N;1~~

(h i1 r~))~ 
(62)

The remaining expressions necessary to make equations 61
and 62 explicit are given by

~~ oA (h 1,r D) 
= XJ 1( A Q D ) e~~~1Z 

~D 
(63)

J (Ac, ) . 
U

~el hlI~~D
) = - 

1 

~D 
S 1.fl 

~D 
e lZ

/J (Ap )
+ ( 1 D 

- \J (AP
D)Icos 

c~ eth 1Z ~
\ ~D / °

(64)
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~~lA~~l’~ D~ 
- 

J1(A:D) cos 
~D 

eihlz apD

_______  
ih

+ I - ~~ ~~~~~~ 
sin 

~D 
e a4~ (65)

\ ~D 
° /

~~oX~~ l’~ D~ 
- 
~~ 

J
0
(Ap ~) e

ihlz 
~ 

- i 
~~~~~~~ 

e~
hlZ

(66)

~~ J1( X p ~ ) cos 
~D 

~~~~ 
~~

ih 1 J l ( X P D ) ih
+ -r_ (xJ O (APD) - 

~D ~~ ~D e ~~

ih 1 ~~~~~~~ ih
— -V.-— — 

~~~ e 12 a~ (67)
o ~D D

~~ lA l’~~D~ 
- 

~~~~~~~ 
sin 

~D eih lZ 
~~

ih
1 ~~~~~~ ih- ÷ iç- (AJ O @PD) 

- 

~D 
)sin 

~D 
e 12

ih J1(Xp ) ih -‘

+ 1 D cos e a~ (68)
D

To obtain G35 (r,r )  and K5(r,r ’) we use prescriptions 51 and 52

in conjunction with transformation equations 53 through 55 and

~D Ia a t

= ( 6 9 )

a = a  x a
2 P D

‘4
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We are now in a position to rewrite the EFIDE and MFIE

operators as the sum of three terms as we stated in the abstract.

The first term describes free-field interaction , the sum of the

first two describes interaction above a perfectly conducting

ground and , na tu ra l ly , the sum of all three terms describes

interaction above a finitely conducting ground . The corresponding

decomposition for the source term will be given in the next section .

U Equations 31 and 37 represent the first stage of the decomposi-
t ion , i.e. , the free—field interaction term has been separated

fr ~ m the scattering form . Thus we must further decompose the

sca t te r ing  term . Recal l ing  equations 61 , 62 and subsequent
equations 63 through 68 we can cast 

~ 3S
(rD ,r

~
) and K5(~~~,r~ ) into

the ~oliowing forms

~ 3s~~ D’~~D~ 
= a a~ + G 35~ . 

~~~ 
~ 

G 35.~ aC ~~

( 7 0 )
3szC z 3szz z z

K (r  ,r ’) K a a + K a ~ + K .~1 .~~s —D —D S~~ . D D ~ D 
sz.

a a
s : Z  Z

where

G
3 

= 

4~ k~ [~
2 

-G21 + k~ V 22 ) + k (-G 21 L 22 )] 
(72a)

G35~~ 
= 

4~’k~ 
[
~ ~

OD 
(—G 21 + k~ V22) + k~~(—G21 L 22)] 

(72b)

= 

4~ k~ I
~~~~

2 
(—G 21 + k2 v

~2 )1 = —G,520 (72c)
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G 3522  
= 

4~~~2 + k~~
) 

(—G 21 + k
2 

V 22 )j  
(72d)

= 

~~ 
[-
~

_ (G
21 

— 022 ) + -I- ~~-~~
__ w22] (72e)

= 

~~~ 
(-G 2~ + 022 ) - 4~ (72f)

= 
~~~~

. 
[
~

-
~

—. (— G 2~ + 022)] 
( 7 2 g)

= 
~~~~~~ 

(G 2~ 
- k

2 v22 )] ( 7 2 h )

where
ik0R~ ih

1
(z+z ’)

G 21 
= 

e = f ie

( 73a )
= [(z + z ’ ) 2 

+ ~2]l/2

• ih 1(z+z ’ )
= 

~~~ 
~~~~~~ 

+ k~ h2 

J
o
(\C

D
)\ dA (73b)

ih 1(z+z ’ )f  2ie 
+ h2 ~~~~~~~~

ih (z+z ’)
f 2 ( h 1 — h2) ew22 — 

k2h1 
+ k~h2 

J
O

( X P
D

) A dA (73d)

The above integrals are well studied and can be found in reference

3 where the same symbols are used with a slight ly dif f e r e n t but

equivalent representation for the integrands.
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To proceed with the decomposition we consider the limit as

conductivity a of the ground becomes infinite. One can show that

u r n  k2 V = 2G , u r n  U = 0, u r n  V = 0, u r n  W = 0
22 21 k+co 22 k-~.oo 22 k-+ oo 22

and equations 72 in this limit becomes

= — 

2 + k 2) G
211 

(74a)

= — 

4iT k~~~ 
t(~

— 
~~~~ 

+ k~~) 
G21~ 

(74b)

G35~~2 
= 

4~ k~~~~D ~~~ 
G

2
~~~~~~ 

= — G
352~~ 

(74c)

G~ 52 2  
= 

411k2[(az2 
+ k~ ) 

G
2l 1 

(74d)

K
5~~ 

= -

~~

-

~~

- 

~~ 
—K~~~ 

(74e)

~ ____= — ____ = - 

(74f)

where the superscript P means perfectly conducting . By

regrouping terms in equations 72 and utilizing equations 74,

we obtained the following decomposition

= + (75)

(76 )

‘4
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where the elements of and are given by equations 74
and the elements of and (F stands for finitely conducting)

are given by

Ia 2v
~~~~~ = i~ [ ~ 2 

+ 022 (77a)

= 

~~~~

. ~~- + U22~ 
(77b )

~~~~~ 
= L~ [3

~~3~~ __ (k2 V22 — 2G 2l )J 
= —G~ (7 7c)

= 
1

2 [(_ ~
_

~
. + k~~)(k

2 V 22 
— 2G 21)j (77 d)

= 

~ 
[_ ~~~~~~~~~~ + ~~~~— 

~~~~~
— w 2~

J 
(77e)

30 2
= 

1 22 
— 

~~
_

~~
• 

~~~22 (77fl

F 1 30 22
= 

~~~ 
3
~~D

= ~~~~~~ (2G~ 1 
— k

2 
V 22 )~~

j 

. (77h)

Thus by invoking equations 31, 37 , 75 and 76 we can complete the
promised decomposition:

C35 = C0 + + (78)

( 79)
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where %‘ ~~ 
are given by equa tions 32 and 38 respectively, the

elements of and by equations 74 and the elements of

and K5 by equations 77.

As a check to the above calculations we should arrive at
equations 74 by employing the standard forms for and
These represent the scattered parts for interaction above a
perfectly conducting ground and are given by the well known
expressions

= (i +~ i~ vv ) • (_% (z ’ -z ’)  I + 2~~ ~~ 
g~ (z ’ • _z’)) (80)

—P 1K5 = — 
~~ X 1

r (81)

where g is the free space scalar Green ’s function given
by equation 33 , G21 is defined by equation 73a and 1r is a reflec-
tion operator given by

T = a  £ +~~ ~ -
~~~~~ & .r 

~D 2 D ‘~D ~D ~

It can be shown by some rather lengthy algebraic manipulations
that equation 80 is identical to equations 74a through 74d and
equation 81 is identical to equations 74e and 74f.
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SECTION V

REP RESENTATIONS FOR ~~~(r )  AND

Using equation 16 in conjunction with the coordinate
notation changes described to obtain equation 27 and equation
29, we obtain

= 

~~ f ~~( ll)  
~~~~~ 

. J(r ’) dv’ (82)

V
J

and using equations 35, 36 , and 82 we obtain

= f ~ (r ’) • J (r ’)  dv’ . ( 8 3 )

vJ

As discussed in the previous section, ET (r )  and 
~~~~~ 

have
meaning in their own right, independent of their role in the

appropriate EFIDE or MFIE. They are the total electric and

magnetic fields at any poin t r in the lossless medium due to
a specified source distribution J(r ’), r ’ E V~~, and equations
82 and 83 include all interaction with the lossy half space.

‘1 The work presented in the previous section enhances the utility
of equations 82 and 83 in that the form to be used for G~

11
~ (r,r ’)

is the simpl if ied form given by equation 78, while the form to
be used for ~ (r,r’) is the simplified form given by equation 79.

If we now focus our attention on the role of 
~~~~~ 

and

in the EFIDE and MFIE then we consider two cases. The first case
is when we desire to calculate the surface current density
induced on the scattering body and the source of excitation is
a specified distribution of current that exists somewhere in the
lossless medium. For this case we must employ equations 82 and

83 explicitly in conjunction with the EFIDE and MFIE. The second

‘4 32
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case is one of considerable interest. This is the case when the
source of excitation is an incident plane wave . For this case

we make use of the fact that 
~~~~~ 

and HT(r) are simply the
:ncident plus reflected fields from the lossy half-space and

we do not have to explicitly evaluate equations 82 and 83.

For completeness we will present explicit representations for

this case. These representations are obtained in the standard

manner in which the incident field is decomposed so that it

~s the superposition of two component fields. One component

field has its electric field polarized perpendicular to the

~iane of incident, and the other component field has its

magnet ic  f i e l d  polarized perpendicular to the plane of inci-
dence. The analysis leading to the results is straightforward

after the described decomposition is employed . For an inci-

dent f i e ld  c lven by

E. = e E0 e~~
k 0f o~~~~ ( 8 4 )

with e being a unit vector along the polarization direction and

n~ being a unit vector in the propagation direction , the tcta

f ie lds  are

.

~ ~~~~~~~~~~~~~~~~~~~~~ 
( 8 5 )

and

( 8 6 )

where

H .  = (E /Z ) (~
t ~~) e 0~~0~~~~ ( 8 7 )

= —E0[(e . )~~ + (
~~ ~ ‘- h)je 0~ R~~ 

(88a~
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= EO[( RH + 1) (~ • (p~ 
- 1) (

~~ ~~) 
( x h)]

e~~ o’~R E  
(88b)

H~ = -(E /Z0
) [(~ 

. h) (n ~ ~~) - (~~~ 
. v)h]e o~R~E (88c)

= (E ‘Z
O
) 
[
(i~~ ~ 1) (e ~~ ~~R ~~ ~ 

- 1) ( e v)~~]

e o~~R~~~ ( 8 8 d )

- a
o z - 

- 4 -~h = ( I~ a — -a then a = a
- 3 Z

a ‘a  -‘
3

= a - a (~~9)

a., = a — 
~~~~~ 

U

3 Z Z

1 -,

— ;< (a . a ) — ~ 
— k~~~ . — (a . .~~ ) ‘ H

= 
0 2 -3 L 

-- 
3 3

- r ~— K (a . —
. ) — [K~ — k l  — (a a

0 Z 0 0 2 0

( 9 C )
- 2 -

— 

—~~ (a . r )  — — ~~~~~~~~~~ . — (a . —

— 

-

~ 
-
~ -. 

-
~ T 1/2

—k (a .~~~~~~+~~~~Hç~~~~~~H j_ ( 3  .n )
~~~’

Z 0 O L  ‘0 Z 0 J

R., and Rv are  the usual Fresnel reflection coefficients

so the square root is defined to have a positive real part.

We note that as the conductivity o~’ the half-spaco approaches

~ni~ nity, then RH 
-. -l and R

v 
— 1. I t  can now be seer. that

th i s  l i m i t  EF’ a nd H v a n i s h  and ~h~~s was t h e  reason fo r  the
decomposition of and 

~T 
~s expressed in e~~~ations 85 and 86.
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The first two terms in these expressions represent the total

fields, incident plane reflected due to the presence of a

perfectly conducting half-space. The addition of and H
F’

to the “perfectly conducting ” total fields, yields an exact

representation for the total fields , ET and 11T resulting from

the presence of the finitely conducting half-space.
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SECTION IV

COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL
DATA FOR METALLI C OBJECTS IN FREE SPACE AND

ABOVE A PERFECTLY CONDUCTING GROUND

U 

In this sec tion we compare numerical data der ived via our - -

Magnetic Field Integral Equation (MFIE) Code to experimental

data obtained at the University of Michigan. The quantity of
interes t is the magnitude of the current density induced on
metallic objects in free space and in the presence of a per-
fectly conducting ground by a monochromatic plane wave . In

particular we considered a perfectly conducting circular cylin—

der in f ree space and also above a perfectly conducting ground
and a perfectly conducting aircraft model in free space. Thus U

figure 3 presents the comparison for the magnitude of the

induced current density as a function of kh (k be ing the free
space wave n umber and h the ha l f l eng th  of the cylinder)  at the
two points P and Q indicated on the graphs . The incident wave U

is polarized with its electric vector parallel to the axis

and the propagation vector k is perpendicular to the axis.
The agreement is generally very good. Notice that the peak

value obtained via the MIlE code is higher than the one

measured at the University of Michigan . This is in agreement U ’

with the results obtained by Sassman (ref. 9) who calculated

the total current I as a function of kh. Sassman obtained

84a for the peak value of the I/H 0 and this should be smaller
than 2TraIJ pI/H0 since JJ p J is maximum at P. The code gives
27ra~Jp I~~89a and the measured data gives 84a. (Figures 4 and 5

are taken from the University of Michigan report since the
solid curves in f igure 3 are our smoothed out drawings for
the original graphs in figures 4 and 5 and as such they are

H 
subjective ) 
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In Figure 6 the cylinder is situated above a perfectly conduct-
ing ground with its axis parallel to the gro’”d. The incident

field is the same as in Figure 3 and the aistance of the cylin—

der axis from the plane is 5a.

Again , Figure 7 refers to the original graph in the Univer-
sity of Michigan report. Figure 8 depicts the same situation as

in Figure 6 except that the cylinder axis is much closer to the

ground. (Figure 9 is the corresponding graph in the University

of Michi gan report.) Notice that the deviation near the two

maxima is much greater than everywhere else. To satisfy our-

selves that the discrepancy between the experimental values

of current density and the corresponding numerical predictions

were not the fault of the finite number of zones used to parti-

tion the surface of the cylinder , we systematically increased the
number of zones until we obtained what appeared to be a con-
verging sequence . For the cylinde r in free space and for the

cylinder 5 radii above the perfectly conducting ground plane
we increased the zoning until for each frequency the response

was insensitive to zoning changes. However , the small change

in the predicted resonant frequency due to a change in zoning ,

coupled with the sharp resonance for the case in which the

axis of the cylinder was 1.5 radii above the ground plane ,

caused the abcve convergence criterion to be too stringent to

be practical  for  frequencies near this resonance ; instead , in

this region , we required that both the resonant frequency and

the peak value be insensitive to zoning changes .

The zoning scheme that produced the results found in

Figure  8 was 18 zones along the length and 10 zones around
the c i rcumference, while for Figure 6 it was sufficient to use
10 zones along the length and 6 zones around the circumference .

In bot~ cases there was one zone along the radius of the endcap .
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Figure 10 is a schematic for the aircraf t model considered
at the University of Michigan the exact dimensions of which are

given in Table 1. The experiments were conducted with the brass
scale model ; however, our graphs refer to the unscaled aircraft
dimensions given in Table 1. Figures 12, 14 and 16 present the
comparison for the magnitude of the induced current density

alon g the top of the fuselage for  kh = 0.82, 1.694, 20.14, where
h is the fuselage halflength. Figures 13, 15, and 17 refer to

the bottom of the fuselage . The incident plane wave has its

electric vector polarized parallel to the fusalage and the
propagation vector perpendicular to the fuselage axis. The
distance L(iri meters) shown in the graphs is the arclength

defined in Figure 11. Notice that the deviation between experi-

mental and theorectical values on the fin (vertical stabilizer)

is much greater than on the fuselage . (In f i gure 13 our results
were off scale and are not shown.) A possible exp lanation for
this discrepancy may be based on the fact that the measuring

sensors are of finite size and do not pick up the fields right

on the surface . This is important because the elliptical cross
section of the f in has a ratio a / b ~~~~6 , i . e . ,  the curvature
about the points where the measurements were performed varies
rapidly and consequently the fields can change rapidly as we

move away from the surface . This is at least true for the

special case of a perfectly conducting cylinder of infinite

length and elliptical cross section immersed in a magnetostatic

field parallel to the minor axis . For this case we found that
at a distance (in the direction of the major axis) equal to

0.25 
~~~ 

0.025 in (b
~ 

is the minor semi-axis) the azimuthal com-

ponent of the total magnetic field is equal to half its value

on the surface. The above discussion indicates that our

higher values on the surface of the f in may actually be compa t-
ib le w ith the lower values obtained with the finite size sensors
which of necessity measure fields at points off the surface .
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Table 1.

MODEL SPECIFICATION

U. of Mich.
Air Force U.  of Mich . (scaled)

Parameter (me te rs ) (me ters)  ( inches)

L 40.00 40.00 6.847

Lf 
16.76 16.76 2.869

L 17.08 17.08 2.924
m

6.16 6.16 1.054

18.11 18.11 3.100

Lh 
4.22 4.22 0.722

6.5 6.5 1.113

af 1.85 1.83 0.313

a
~ 

3.66 3.651 0.625

b
~ 

0.73 0.634 0.109

a
h 

1.83 1.826 0.313

b
h 

0.37 0.317 0.054

3 . 0 0  3 .104 0.531

0.61 0.537 0.092
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